Supplementary Information Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks

نویسندگان

  • Daniel Marbach
  • Sushmita Roy
  • Ferhat Ay
  • Patrick E. Meyer
  • Tamer Kahveci
  • Christopher A. Bristow
  • Manolis Kellis
چکیده

S1 Fraction of integrative network edges with and without physical support . . . . . 4 S2 Degree distributions of integrative networks . . . . . . . . . . . . . . . . . . . . . 5 S3 Structural properties of integrative networks . . . . . . . . . . . . . . . . . . . . . 6 S4 Network motifs of integrative networks . . . . . . . . . . . . . . . . . . . . . . . . 7 S5 Prediction of novel functional annotations . . . . . . . . . . . . . . . . . . . . . . 8 S6 Expression prediction for eight representative target genes . . . . . . . . . . . . . 9 S7 Squared errors for expression prediction using integrative and physical networks . 10 S8 Correlation of predictable and unpredictable genes across two time courses . . . . 11 S9 Definition of chromatin profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 S10 Relative importance of input features for the unsupervised integrative network . 13

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks.

Gaining insights on gene regulation from large-scale functional data sets is a grand challenge in systems biology. In this article, we develop and apply methods for transcriptional regulatory network inference from diverse functional genomics data sets and demonstrate their value for gene function and gene expression prediction. We formulate the network inference problem in a machine-learning f...

متن کامل

Integrative inference of transcriptional regulatory networks in Drosophila

Transcriptional regulatory networks describe regulatory relationships between transcription factors and target genes and constitute the core information processing machinery of a cell. Efforts of the modENCODE consortium have generated massive amounts of ChIP binding, expression, and chromatin datasets that capture different parts of the regulation machinery of the fly, Drosophila melanogaster....

متن کامل

Transcription factor networks in Drosophila melanogaster.

Specific cellular fates and functions depend on differential gene expression, which occurs primarily at the transcriptional level and is controlled by complex regulatory networks of transcription factors (TFs). TFs act through combinatorial interactions with other TFs, cofactors, and chromatin-remodeling proteins. Here, we define protein-protein interactions using a coaffinity purification/mass...

متن کامل

Concentration dependent effect of morphine, aspirin, capsaicin and chili pepper hydro alcoholic extract on thermal and chemical pain model in fruit fly (Drosophila melanogaster)

Introduction: Pain research using animal models is related to ethical concerns, so invertebrates and insects have been recommended by researchers. In the present study, the nociceptive and antinociceptive effects of capsaicin, aspirin, morphine and chili extract were examined using fruit fly (Drosophila melanogaster) as an alternative for rodent pain model. Methods: Stage 3 of larvae and ad...

متن کامل

Improving the Inference of Gene Expression Regulatory Networks with Data Aggregation Approach

Introduction: The major issue for the future of bioinformatics is the design of tools to determine the functions and all products of single-cell genes. This requires the integration of different biological disciplines as well as sophisticated mathematical and statistical tools. This study revealed that data mining techniques can be used to develop models for diagnosing high-risk or low-risk lif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012